

Advanced Cyber Threat Hunting & DFIR Training

Digital Forensics & Incident Response

40-Hour
Instructor-Led
Training

Learn from
Industry Experts

Highly Interactive
and Dynamic
Sessions

Hands-on
Labs

Course Highlights

Learn with
Real-World
Scenarios

Access to Recorded
Sessions

Extended Post
Training Support

Career Guidance
and Mentorship

About Course

This comprehensive course is designed to equip cybersecurity professionals with advanced skills in cyber threat hunting, DFIR (Digital Forensics and Incident Response) tactics. Participants will gain hands-on experience in detecting, analyzing, and mitigating cyber threats using the latest tools and techniques. Through practical labs and real-world scenarios, learners will develop the expertise needed to effectively protect and defend their organizations from sophisticated cyber attacks.

As it is a skill-based training, this course focuses deeply on digital forensics, providing a thorough understanding of the techniques and methodologies used to uncover, preserve, and analyze digital evidence. Participants will learn how to conduct comprehensive memory forensics to uncover hidden artifacts and understand the state of a system at the time of an incident. The course also covers disk forensics, teaching participants how to find evidence on file systems, and registry forensics, which involves examining the Windows registry to uncover artifacts related to system and user activity.

Course Objectives

Upon successful completion of the training, participants will be able to:

- ✓ Understand the fundamentals of threat hunting and DFIR.
- ✓ Develop and implement detection engineering approaches.
- ✓ Utilize MITRE frameworks (ATT&CK, Engage, D3FEND) for threat analysis and response.
- ✓ Set up and configure a detection lab for simulating and identifying cyber threats.
- ✓ Perform static and dynamic malware analysis.
- ✓ Reverse engineer malware samples to uncover malicious behavior.
- ✓ Conduct threat hunting using event log, ETW, and kernel callbacks.
- ✓ Apply forensic investigation techniques to analyze memory, disk, and registry artifacts.
- ✓ Execute memory forensics and analyze results using specialized frameworks.
- ✓ Implement and manage disk and registry forensic processes.

Target Audience

This training is ideal for:

- ✓ Malware Analysts
- ✓ Digital Forensic Investigators
- ✓ Cyber Security Analysts
- ✓ Network Security Engineers
- ✓ Red Team Members/Penetration Testers
- ✓ Incident Response Team Members

Pre-Requisites

- ✓ Familiarity with Windows and Linux at log level
- ✓ Comprehensive understanding of Information Security and its terms
- ✓ Basics of Networking
- ✓ Experience in Cybersecurity is highly recommended

Course Content

Module 1

Introduction to Threat Hunting and DFIR

- ✓ Overview of threat hunting and its importance
- ✓ Fundamentals of Digital Forensics and Incident Response
- ✓ Key Concepts and Terminology
- ✓ Windows logging and internal
- ✓ Important Windows components

Module 2

Detection Engineering Approaches and Scenarios

- ✓ Techniques for effective detection engineering
- ✓ Real-world scenarios and case studies
- ✓ Developing detection strategies

Module 3

MITRE Frameworks (e.g., ATT&CK, Engage, D3FEND)

- ✓ Understanding and utilizing MITRE ATT&CK
- ✓ Introduction to MITRE Engage and D3FEND
- ✓ Applying frameworks to threat hunting and DFIR

Module 4

MITRE ATT&CK-based threat hunting and detection

- ✓ Deep dive into MITRE ATTACK and detections based on it
- ✓ ATTACK-based hunting
- ✓ Tactics, Techniques, Procedures, Groups, Software, Detections, Mitigations

Module 5

Detection Lab Setup (for Simulating and Detecting Attacks)

- ✓ Setting up a detection lab environment
- ✓ Tools and configurations for simulating attacks
- ✓ Detecting and analyzing simulated attacks

Module 6

Malware Analysis (Static and Dynamic Analysis)

- ✓ Techniques for static malware analysis
- ✓ Dynamic analysis methods
- ✓ Tools and resources for malware analysis
- ✓ Sigma and Yara rules

Module 7

Reverse Engineering a Malware Sample

- ✓ Introduction to reverse engineering
- ✓ Tools and techniques for reversing malware
- ✓ Practical exercises in malware reverse engineering

Module 8

Hunting on Event Logs, ETW, and Kernel Callbacks

- ✓ Utilizing event logs for threat hunting
- ✓ Understanding and using ETW
- ✓ Kernel callback analysis

Module 9 Call Stack-Based Threat Hunting

- ✓ Analyzing suspicious function call stack trace
- ✓ Creating detection rules
- ✓ Live practical scenarios

Module 10 Threat Hunting Scenarios

- ✓ Identifying and analyzing suspicious threads
- ✓ Practical threat hunting scenarios
- ✓ Techniques and tools for threat hunting

Module 11 Forensic Investigation Techniques

- ✓ Core forensic investigation methods
- ✓ Evidence collection and preservation
- ✓ Analyzing forensic data

Module 12 Analysis Using Memory Forensics Frameworks

- ✓ Overview of memory forensics frameworks
- ✓ Practical application of frameworks
- ✓ Case studies and real-world examples

Module 13 Disk and Registry forensics

- ✓ Fundamentals of disk forensics
- ✓ Techniques for registry analysis
- ✓ Tools and practical exercises for disk and registry forensics

Module 14 Ransomware Investigation scenario

- ✓ Combination of threat hunting and forensic investigation technique
- ✓ Live demonstration and Hands-on exercise
- ✓ Real-world ransomware sample attack investigation

Tools to be Learned

SIEM platforms (such as Elastic)

Malware analysis tools (e.g., IDA Pro, x64dbg, windbg)

Forensics tools (e.g., Volatility, Eric Zimmerman tools)

ETW and event log analysis tools

Lab

Simulating and detecting a cyber attack

Conducting malware analysis and reverse engineering

Ransomware Investigation

Practical threat hunting scenarios

Bonus Content

Interview preparation and guidance

Lab VM and malware samples for analysis

Custom-built list/repository of openly available resources

Custom-built mind-maps of different frameworks and major concepts discussed in the course
(for example: MITRE ATT&CK)

Cheat sheets for important topics (for example: x64 assembly instructions, windbg commands, malware sample sources)

System Requirements

64-bit Intel i5/i7
2.0+ GHz
processor or
equivalent

At least 8GB of
RAM and 50GB of
free disk space

Ability to run at
least 2 VMs (using
Virtual Box,
Vmware etc.)

Windows 10 or later,
macOS 10 or later, or
Linux

Internet access for
downloading tools and
resources

Contact us

www.infosectrain.com
sales@infosectrain.com

Follow us on

